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Abstract
Three items related to path integrals in quantum statistics are discussed: (1)
entropic sampling within Wang–Landau algorithm; (2) calculating partition
function for a fermion system using expanded ensemble technique; (3) applying
classical density functional theory to expressions in path integral form.

PACS numbers: 02.70.Ss, 05.20.Gg, 05.30.−d, 02.70.−c, 31.15.Kb, 31.15.Ew

1. Entropic sampling within Wang–Landau algorithm for calculation of quantum
canonical averages

The path integral form of the canonical quantum partition function (PF) in the n-bead
approximation is

Zn(β) =
∫

dq exp

(
−H1(q)

β
− βH2(q)

)
,

where q is a dNn-vector, d is the dimensionality, N and n are the number of particles and beads,
respectively, β = (kT )−1;H1(q) = nµ

2h̄

∑
1�t�n(rt − rt+1)

2 and H2(q) = 1
n

∑
1�t�n V (rt )

account for kinetic and potential energy of the system (rt is a dN-vector, µ is the particle
mass, rn+1 ≡ r1). β enters into two terms in Zn(β) of powers 1 and −1, so the density of
states, �, depends on two variables, E1 and E2. For Zn(β), we get

Zn(β) =
∫

dE1 dE2 exp

(
−E1

β
− βE2

)
�(E1, E2),

�(E1, E2) =
∫

dq δ(E1 − H1(q))δ(E2 − H2(q)).
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Table 1. Results for 1D harmonic oscillator. (. . .)� are for analytical data; Z1D(β; 8), U
pot
1D (β; 8)

due to [5] and Z1D(β; ∞) = (2 sinh(β/2))−1, U
pot
1D (β; ∞) = coth(β/2)/4; (−Rcut, +Rcut):

interval of integration; Ngrid: grid number; n: number of beads.

βh̄ω n = 2p+1 Z3
1D(β; n) 3 × U

pot
1D (β; n) Rcut Ngrid tCPU (s)

8.0 8 9.657 8 × 10−6 0.671 429 6.0 300 2.0
– (8 9.657 8 × 10−6 0.671 429)�

– 1024 6.150 6 × 10−6 0.750 498 6.0 300 0.8
– 4096 6.150 4 × 10−6 0.750 503 6.0 300 0.6
– (∞ 6.150 4 × 10−6 0.750 503)�

1.0 8 0.885 268 1.620 701 8.0 400 1.9
– (8 0.885 268 1.620 701)�

– 1024 0.883 402 1.622 965 8.0 600 3.6
– (∞ 0.883 402 1.622 965)�

E1 is always positive while E2 can have both signs. Knowing � (or S = ln �), one gets
the canonical distribution, P(E1, E2;β) = exp(−E1/β − E2β + S(E1, E2)), to calculate
equilibrium properties.

Simulations were carried out for a 3D quantum oscillator so that V (r) = µω2

2 r2 > 0
(E1, E2 are both positive) with the number of beads n = 5, 8. A grid of boxes labelled as
(i, k), 1 � i � Nb1, 1 � k � Nb2, is introduced. Following the Wang–Landau (WL) algorithm
[1] initial values of entropy distribution, Sik , are set to zero. The MC step is an attempt to shift
a bead to a new position with transition probability: p(ik → i ′k′) = min(1, exp(Sik − Si ′k′));
if it is satisfied the trial is accepted. Irrespectively, a constant �s is added to the current
entropy value (i.e., either to Sik , or to Si ′k′) and 1—counter of visits (nv(i, k) or nv(i ′, k′)).
The initial value of �s, �s0 = 1, is used in most cases. A MC sweep included ∼107 steps that
provide ∼102 visits to each box. Each next sweep starts with a decrease of �s: �s → a�s

(a < 1, we used 0.5 � a � 0.95) that provides fine tuning of the values of Sik .
Calculated function S(E1, E2), figure 1(a), provides canonical distributions P(E1, E2;β)

shown for β = 1
8 , 1

2 , 1, 2, 8 in figures 1(b)–(d ). For the highest T (β = 1
8 , classical regime)

its maximum is stretched along the E2-axis in a narrow stripe. For β = 1
2 , 1 a strong shift of

the maximum to the origin of the (E1, E2)-plane is observed, isolines are oblique to both axes
and the steepness of slopes is much less. For β = 2, 8 the maximum is stretched along the
E1-axis. The calculated potential energy 〈Up〉 was compared (table 1 [2]) with the exact one,
U ex

p = d
4 coth

(
β

2

)
, and with finite n-bead analytical expression [2].

2. Calculating partition function and averages for a fermion system using the expanded
ensemble MC technique

For a system of N identical particles in 3D space, the partition function (PF) is expressed as a
sum over permutations {P } of PF for distinguishable particles [3]:

Z
(A,S)
N = Tr(ρ(A,S)) = 1

N !

∑
{P }

ξ [P ]
∫

dx1 · · · dxNρ(D)(x1 · · · xN ;P(x1) · · · P(xN)).

xi is a set of space and spin variables, xi = (�r, σ ) and
∫

dx = ∑
σ

∫
d�r, ξ = ±1 for fermions

and bosons and [P ] is the parity of permutation P. For the spin-independent
Hamiltonian Z

(A,S)
N = 1

N!

∑
{P } ξ [P ]K

(D)
N (P )Z

(D)
N (P ). K(P ) = ∑

σ1···σN=±1/2
δ(σ1, P (σ1)) · · · δ(σN, P (σN)) is the spin PF; the coordinate PF for distinguishable particles is
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Figure 1. Entropy (a) and canonical distributions for β = 1
8 , 1

2 , 1, 2, 8 ((b), (c), (d ), (e), (f )).

Z
(D)
N (P ) = ∫

d�r1 · · · d�rN ρ
(D)
0 [�r1 · · · �rN ;P(�r1) · · · P(�rN)] = ∫

dq ρ
(D)
0 (q, P (q)). Z

(A,S)
N can

be presented as a sum over classes of permutations {G}. Then ξ [P ] → ξ [G],K
(D)
N (P ) →

K
(D)
N (G) = 2

∑
ν Cv(G), where Cv(G) is the number of cycles of length ν in class G, so that∑

ν Cv(G) is the total number of cycles in class G. For sp = 0,K(G) = 1 for all G.
ZD(P ) = ZD(G), since the value of an integral depends only on the cycle structure of P [4].
This way the PF becomes

Z
(A,S)
N = 1

N !

∑
{G}

ξ [G]K(G)n(G)Z
(D)
N (G),

where n(G) is the number of permutations in the given class G,n(G) =
N !

(∏N
ν=1 (νCν(G)Cν(G)!)

)−1
.
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Figure 2. Ratios of partition functions x1, x2 and factor f3.

For N = 2, PF is Z
(A)
2 = 1

2 [K(12)Z12 − K(2)Z2], classes are designated as (12), (2) and

n(12) = n(2) = 1. For sp = 1/2,K(12),K(2) = 4, 2. For N = 3, PF is Z
(A)
3 =

1
3! [K(13)Z13 − 3K(12)Z12 + 2K(3)Z3],K(13),K(12),K(3) = 8, 4, 2. Z

(A)
2 and Z

(A)
3 can

be presented in the form Z
(A)
2 = Z12f2; Z

(A)
3 = Z13f3, where f2 = 1

2 ((4) · 1 − (2) · x), x =
Z2
Z12

; f3 = 1
6 ((8) · 1 − (4) · 3x1 + (2) · 2x2),x1 = Z12

Z13
,x2 = Z3

Z13
; (factors (8), (4), (2)

correspond to sp = 1
2 ). Z1N is the PF for N distinguishable particles while factor fN accounts

for exchange. It is expressed through ratios of PF for certain classes to PF for 1N . The
energy can be derived from E = −(∂/∂β)(ln Z). E

(A)
2 = E12f

(2)
E , f

(2)
E = (4)·1−(2)·xy

(4)·1−(2)·x , y =
E2
E12

, E
(A)
3 = E13f

(3)
E , f

(3)
E = (8)·1−(4)·3x1y1+(2)·2x2y2

(8)·1−(4)·3x1+(2)·2x2
, y1 = E12

E13
, y2 = E3

E13
.

We apply expanded ensemble (EE) MC [5] to calculate x, y, x1, y1, x2, y2 for systems
with N = 2, 3 noninteracting fermions in a harmonic field and compare our results with the
exact data, figure 2. It is seen that x1 and x2 follow the exact curves very accurately. Data for
f3, f

E
3 , sp = 1

2 are also consistent up to β = 9. Data for sp = 0 (not shown) already strongly
deviate from theory at β > 3.

3. Applying classical density functional theory developed for polymers to quantum
statistical expressions in path integral form

The density functional approach implies obtaining in some way the particle density ρ(r),
which is used for the calculation of PF, Z = ∫

ρ(r) dr, and related averages. Consider a
quantum particle in an external field φ(r) at inverse temperature β presented by a closed
trajectory of n beads R = (r1, . . . , rn). This trajectory can be treated as a phantom polymer
ring chain of n monomers with springs dependent on temperature. ρ(r) can be expressed as

ρ(r) =
∫ n∑

i=1

δ(r − ri ) exp(−βVb(R)) exp(−βext(R)) dR

with Vb(R) = Kf

∑n
i=1(ri+1 − ri )

2;ext(R) = 1
n

∑n
i=1 φ(ri );Kf = πn/βλ2; λ2 = 2πh̄2β

m
;

rn+1 = r1.
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Table 2. ORA-results for ground states of hydrogen, helium and lithium compared to exact values in
eV: Eg(H) = −13.606, Eg(He+) = −54.4, Eg(He) = −79.1, Eg(Li2+) = −121.8, Eex

g (Li+) =
−197.4.

T (K) n U tot (eV) Rs (Å) Rcut (Å) Ngrid tCPU(FFT) (m)

H 4 000 96 000 −13.607 0.001 10.24 4096 30.0

He+ 8 000 16 384 −54.608 0.001 15.36 4096 5.0
He 8 000 16 384 −78.150 0.001 15.36 4096 32.0

Li2+ 16 000 24 000 −122.725 0.001 15.36 4096 7.5
Li+ 16 000 24 000 −197.342 0.001 15.36 4096 45.0

3.1. Exact solution for a ring

For a ring ρ(r) can be calculated exactly in the following way: ρ(exact)
ring (r) = exp(−βφ(r)) ×∫

exp(−βφ(r′))[gn/2(r, r′)]2 dr′, where gn/2(r, r′) is the n/2th order correlation function
obtained from a p-stage procedure: g

(0)
1 (r, r′) = exp(−βKf (r − r′)2); g

(1)
2 (r, r′) =∫

exp(−βφ(r′′))g(0)
1 (r, r′′)g(0)

1 (r′, r′′) dr′′; . . . ; g
(p)

n/2(r, r′) = ∫
exp(−βφ(r′′))g(p−1)

n/4 (r, r′′)
g

(p−1)

n/4 (r′, r′′) dr′′. The integral of ρ(exact)
ring (r) yields the PF. The problem reduces to evaluation

of integrals over r ′′ for each pair (r, r ′). Results for a quantum 1D oscillator and comparison
with the analytic data (table 1) shows the striking accuracy of the numerical method in a wide
range of T together with the great number of beads involved and extremely short computer
times (compared with typical MC parameters).

3.2. Exact expression for an open chain and related approximation for a ring

For an open chain ρ(r) is ρ(exact)
open (r) ∼ ∑n

i=1 exp
(− β

n
φ(r)

)
G(i)(r)G(n−i)(r), where functions

G(i)(r) are obtained from the following iteration procedure: G(0)(r) = 1;G(i)(r) =∫
G(i−1)(r′) exp

(− β

n
φ(r′)

)
exp(−βKf (r − r′)2) . . . .

This equation is exact for open chains and can yield an open ring approximation (ORA)
ρ

(approx)
ring (r) ∼ n exp

(− β

n
φ(r)

)
[G(n/2)(r)]2. That becomes more and more accurate with

increasing n. ORA was used for a quantum particle in a 3D harmonic field, an electron in the
H-atom and He+, Li2+ ions. In all the 3D cases the fast Fourier transform was used (table 2).

3.3. Interacting particles in a Coulomb field, no exchange

Particles are inserted into the external field one after another. The first one is treated within
the ORA procedure while a self-consistent iteration for each newly added chain-particle
interacting with a temporarily fixed distribution of all the rest is organized. This is done on
the mean-field level by calculating the ‘correlation integral’ for an arbitrary pair of interacting
beads: Ĩcorr(r′) = ∫

ρN (r′′)
N

exp[−βnVint(|r′ − r′′|)] dr′′, which is incorporated into iteration

ORA procedure: G̃
(i)
N (r) = ∫

G̃
(i−1)
N (r′)ĨN−1

corr (r′) exp(−βnφ(r′)) exp(−βnKf (r − r′)2) dr′.
The overall distribution of N distinguishable quantum particles is then obtained as:

ρ̃N (r) ∼ Nn exp(−βnφ(r))
[
G̃

(n/2)

N (r)
]2

(iteration is initialized with ρN(r) = ρN−1(r)N/(N−
1), N > 1). The updated distribution is mixed with the previous one: ˜̃ρN(r) = (4ρ̃N (r) +
ρN(r))/5, so that a few (< 10) iterations per added particle are needed.

The energy of a particle in the external field is calculated as U
pot
1 (β) = ∫

φ(r)ρ(r : βn) dr;
the inter-particle interaction U int

N (β) = N(N−1)

2

∫
ρN (r;βn)

N
dr

∫
ρN (r′;βn)

N
exp(−βnVint(|r −
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r′|))Vint(|r − r′|) dr′. Virial theorem gives for Coulomb interaction U kin
N = − 1

2

(
U

pot
N + U int

N

)
;

so for total energy U tot
N = U

pot
N + U int

N + U kin
N = 1

2

(
U

pot
N + U int

N

)
.

Calculations were made for two electrons in the He atom and in the Li+ ion (table 2).

4. Conclusion

We presented three different approaches to the treatment of quantum statistical problems.
The entropic sampling and expanded ensemble Monte Carlo methods of sections 1 and 2
can readily be applied to more complicated systems than those considered above; though this
would require much greater computer efforts. The density functional approach of section 3
appears to be much faster, though so far it has been restricted to low-dimensional cases or
cases with spherical symmetry.
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