Path integral method in quantum statistics problems: generalized ensemble Monte Carlo and density functional approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 394711
(http://iopscience.iop.org/0305-4470/39/17/S62)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 03/06/2010 at 04:25

Please note that terms and conditions apply.

Path integral method in quantum statistics problems: generalized ensemble Monte Carlo and density functional approach

P N Vorontsov-Velyaminov ${ }^{1}$, M A Voznesenski ${ }^{1}$, D V Malakhov ${ }^{1}$, A P Lyubartsev ${ }^{2}$ and A V Broukhno ${ }^{3}$
${ }^{1}$ Faculty of Physics, St Petersburg State University, 198504 St Petersburg, Russia
${ }^{2}$ Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University,
S-106 91 Stockholm, Sweden
${ }^{3}$ Quantum Protein Centre, Technical University of Denmark, Building 309, DK-2800 Lyngby, Denmark
E-mail: voron.wgroup@pobox.spbu.ru and sasha@physc.su.se

Received 6 September 2005, in final form 18 October 2005
Published 7 April 2006
Online at stacks.iop.org/JPhysA/39/4711

Abstract

Three items related to path integrals in quantum statistics are discussed: (1) entropic sampling within Wang-Landau algorithm; (2) calculating partition function for a fermion system using expanded ensemble technique; (3) applying classical density functional theory to expressions in path integral form.

PACS numbers: $02.70 . \mathrm{Ss}, 05.20 . \mathrm{Gg}, 05.30 .-\mathrm{d}, 02.70 .-\mathrm{c}, 31.15 . \mathrm{Kb}, 31.15 . \mathrm{Ew}$

1. Entropic sampling within Wang-Landau algorithm for calculation of quantum canonical averages

The path integral form of the canonical quantum partition function (PF) in the n-bead approximation is

$$
Z_{n}(\beta)=\int \mathrm{d} q \exp \left(-\frac{H_{1}(q)}{\beta}-\beta H_{2}(q)\right)
$$

where q is a $d N n$-vector, d is the dimensionality, N and n are the number of particles and beads, respectively, $\beta=(k T)^{-1} ; H_{1}(q)=\frac{n \mu}{2 \hbar} \sum_{1 \leqslant t \leqslant n}\left(r_{t}-r_{t+1}\right)^{2}$ and $H_{2}(q)=\frac{1}{n} \sum_{1 \leqslant t \leqslant n} V\left(r_{t}\right)$ account for kinetic and potential energy of the system $\left(r_{t}\right.$ is a $d N$-vector, μ is the particle mass, $\left.r_{n+1} \equiv r_{1}\right) . \beta$ enters into two terms in $Z_{n}(\beta)$ of powers 1 and -1 , so the density of states, Ω, depends on two variables, E_{1} and E_{2}. For $Z_{n}(\beta)$, we get

$$
\begin{aligned}
& Z_{n}(\beta)=\int \mathrm{d} E_{1} \mathrm{~d} E_{2} \exp \left(-\frac{E_{1}}{\beta}-\beta E_{2}\right) \Omega\left(E_{1}, E_{2}\right) \\
& \Omega\left(E_{1}, E_{2}\right)=\int \mathrm{d} q \delta\left(E_{1}-H_{1}(q)\right) \delta\left(E_{2}-H_{2}(q)\right)
\end{aligned}
$$

Table 1. Results for 1D harmonic oscillator. (... ${ }^{\star}$ are for analytical data; $Z_{1 \mathrm{D}}(\beta ; 8), U_{1 \mathrm{D}}^{\mathrm{pot}}(\beta ; 8)$ due to [5] and $Z_{1 \mathrm{D}}(\beta ; \infty)=(2 \sinh (\beta / 2))^{-1}, U_{1 \mathrm{D}}^{\text {pot }}(\beta ; \infty)=\operatorname{coth}(\beta / 2) / 4 ; \quad\left(-R_{\mathrm{cut}},+R_{\mathrm{cut}}\right)$: interval of integration; $N_{\text {grid }}$: grid number; n : number of beads.

$\beta \hbar \omega$	$n=2^{p+1}$	$Z_{1 \mathrm{D}}^{3}(\beta ; n)$	$3 \times U_{1 \mathrm{D}}^{\mathrm{pot}}(\beta ; n)$	$R_{\text {cut }}$	$N_{\text {grid }}$	$t_{\mathrm{CPU}}(\mathrm{s})$
8.0	8	9.6578×10^{-6}	0.671429	6.0	300	2.0
-	$(8$	9.6578×10^{-6}	$0.671429)^{\star}$			
-	1024	6.1506×10^{-6}	0.750498	6.0	300	0.8
-	4096	6.1504×10^{-6}	0.750503	6.0	300	0.6
-	$(\infty$	6.1504×10^{-6}	$0.750503)^{\star}$			
1.0	8	0.885268	1.620701	8.0	400	1.9
-	$(8$	0.885268	$1.620701)^{\star}$			
-	1024	0.883402	1.622965	8.0	600	3.6
-	$(\infty$	0.883402	$1.622965)^{\star}$			

E_{1} is always positive while E_{2} can have both signs. Knowing Ω (or $S=\ln \Omega$), one gets the canonical distribution, $P\left(E_{1}, E_{2} ; \beta\right)=\exp \left(-E_{1} / \beta-E_{2} \beta+S\left(E_{1}, E_{2}\right)\right)$, to calculate equilibrium properties.

Simulations were carried out for a 3D quantum oscillator so that $V(r)=\frac{\mu \omega^{2}}{2} r^{2}>0$ (E_{1}, E_{2} are both positive) with the number of beads $n=5,8$. A grid of boxes labelled as $(i, k), 1 \leqslant i \leqslant N_{b 1}, 1 \leqslant k \leqslant N_{b 2}$, is introduced. Following the Wang-Landau (WL) algorithm [1] initial values of entropy distribution, $S_{i k}$, are set to zero. The MC step is an attempt to shift a bead to a new position with transition probability: $p\left(i k \rightarrow i^{\prime} k^{\prime}\right)=\min \left(1, \exp \left(S_{i k}-S_{i^{\prime} k^{\prime}}\right)\right)$; if it is satisfied the trial is accepted. Irrespectively, a constant Δs is added to the current entropy value (i.e., either to $S_{i k}$, or to $S_{i^{\prime} k^{\prime}}$) and 1-counter of visits ($n v(i, k)$ or $n v\left(i^{\prime}, k^{\prime}\right)$). The initial value of $\Delta s, \Delta s_{0}=1$, is used in most cases. A MC sweep included $\sim 10^{7}$ steps that provide $\sim 10^{2}$ visits to each box. Each next sweep starts with a decrease of $\Delta s: \Delta s \rightarrow a \Delta s$ ($a<1$, we used $0.5 \leqslant a \leqslant 0.95$) that provides fine tuning of the values of $S_{i k}$.

Calculated function $S\left(E_{1}, E_{2}\right)$, figure $1(a)$, provides canonical distributions $P\left(E_{1}, E_{2} ; \beta\right)$ shown for $\beta=\frac{1}{8}, \frac{1}{2}, 1,2,8$ in figures $1(b)-(d)$. For the highest $T\left(\beta=\frac{1}{8}\right.$, classical regime) its maximum is stretched along the E_{2}-axis in a narrow stripe. For $\beta=\frac{1}{2}, 1$ a strong shift of the maximum to the origin of the $\left(E_{1}, E_{2}\right)$-plane is observed, isolines are oblique to both axes and the steepness of slopes is much less. For $\beta=2,8$ the maximum is stretched along the E_{1}-axis. The calculated potential energy $\left\langle U_{p}\right\rangle$ was compared (table 1 [2]) with the exact one, $U_{p}^{\text {ex }}=\frac{d}{4} \operatorname{coth}\left(\frac{\beta}{2}\right)$, and with finite n-bead analytical expression [2].

2. Calculating partition function and averages for a fermion system using the expanded ensemble MC technique

For a system of N identical particles in 3D space, the partition function (PF) is expressed as a sum over permutations $\{P\}$ of PF for distinguishable particles [3]:
$Z_{N}^{(A, S)}=\operatorname{Tr}\left(\rho^{(A, S)}\right)=\frac{1}{N!} \sum_{\{P\}} \xi^{[P]} \int \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N} \rho^{(D)}\left(x_{1} \cdots x_{N} ; P\left(x_{1}\right) \cdots P\left(x_{N}\right)\right)$.
x_{i} is a set of space and spin variables, $x_{i}=(\vec{r}, \sigma)$ and $\int \mathrm{d} x=\sum_{\sigma} \int \mathrm{d} \vec{r}, \xi= \pm 1$ for fermions and bosons and $[P]$ is the parity of permutation P. For the spin-independent Hamiltonian $\quad Z_{N}^{(A, S)}=\frac{1}{N!} \sum_{\{P\}} \xi^{[P]} K_{N}^{(D)}(P) Z_{N}^{(D)}(P) . \quad K(P)=\sum_{\sigma_{1} \cdots \sigma_{N}= \pm 1 / 2}$ $\delta\left(\sigma_{1}, P\left(\sigma_{1}\right)\right) \cdots \delta\left(\sigma_{N}, P\left(\sigma_{N}\right)\right)$ is the spin PF ; the coordinate PF for distinguishable particles is

Figure 1. Entropy (a) and canonical distributions for $\beta=\frac{1}{8}, \frac{1}{2}, 1,2,8((b),(c),(d),(e),(f))$.
$Z_{N}^{(D)}(P)=\int \mathrm{d} \vec{r}_{1} \cdots \mathrm{~d} \vec{r}_{N} \rho_{0}^{(D)}\left[\vec{r}_{1} \cdots \vec{r}_{N} ; P\left(\vec{r}_{1}\right) \cdots P\left(\vec{r}_{N}\right)\right]=\int \mathrm{d} q \rho_{0}^{(D)}(q, P(q)) . \quad Z_{N}^{(A, S)}$ can be presented as a sum over classes of permutations $\{G\}$. Then $\xi^{[P]} \rightarrow \xi^{[G]}, K_{N}^{(D)}(P) \rightarrow$ $K_{N}^{(D)}(G)=2^{\sum_{v} C_{v}(G)}$, where $C_{v}(G)$ is the number of cycles of length v in class G, so that $\sum_{v} C_{v}(G)$ is the total number of cycles in class G. For $s p=0, K(G)=1$ for all G. $Z_{D}(P)=Z_{D}(G)$, since the value of an integral depends only on the cycle structure of P [4]. This way the PF becomes

$$
Z_{N}^{(A, S)}=\frac{1}{N!} \sum_{\{G\}} \xi^{[G]} K(G) n(G) Z_{N}^{(D)}(G)
$$

where $n(G)$ is the number of permutations in the given class $G, n(G)=$ $N!\left(\prod_{\nu=1}^{N}\left(\nu^{C_{\nu}(G)} C_{\nu}(G)!\right)\right)^{-1}$.

Figure 2. Ratios of partition functions x_{1}, x_{2} and factor f_{3}.

For $N=2, \mathrm{PF}$ is $Z_{2}^{(A)}=\frac{1}{2}\left[K\left(1^{2}\right) Z_{1^{2}}-K(2) Z_{2}\right]$, classes are designated as $\left(1^{2}\right),(2)$ and $n\left(1^{2}\right)=n(2)=1$. For $s p=1 / 2, K\left(1^{2}\right), K(2)=4,2$. For $N=3$, PF is $Z_{3}^{(A)}=$ $\frac{1}{3!}\left[K\left(1^{3}\right) Z_{1^{3}}-3 K(12) Z_{12}+2 K(3) Z_{3}\right], K\left(1^{3}\right), K(12), K(3)=8,4,2 . \quad Z_{2}^{(A)}$ and $Z_{3}^{(A)}$ can be presented in the form $Z_{2}^{(A)}=Z_{1^{2}} f_{2} ; Z_{3}^{(A)}=Z_{1^{3}} f_{3}$, where $f_{2}=\frac{1}{2}((4) \cdot 1-(2) \cdot x), x=$ $\frac{Z_{2}}{Z_{1^{2}}} ; f_{3}=\frac{1}{6}\left((8) \cdot 1-(4) \cdot 3 x_{1}+(2) \cdot 2 x_{2}\right), x_{1}=\frac{Z_{12}}{Z_{1^{3}}}, x_{2}=\frac{Z_{3}}{Z_{1^{3}}} ;$ (factors (8), (4), (2) correspond to $\left.s p=\frac{1}{2}\right) . Z_{1^{N}}$ is the PF for N distinguishable particles while factor f_{N} accounts for exchange. It is expressed through ratios of PF for certain classes to PF for 1^{N}. The energy can be derived from $E=-(\partial / \partial \beta)(\ln Z) . E_{2}^{(A)}=E_{1^{2}} f_{E}^{(2)}, f_{E}^{(2)}=\frac{(4) \cdot 1-(2) \cdot x y}{(4) \cdot 1-(2) \cdot x}, y=$ $\frac{E_{2}}{E_{12}}, E_{3}^{(A)}=E_{1^{3}} f_{E}^{(3)}, f_{E}^{(3)}=\frac{(8) \cdot 1-(4) \cdot 3 x_{1} y_{1}+(2) \cdot 2 x_{2} y_{2}}{(8) \cdot 1-(4) \cdot 3 x_{1}+(2) \cdot 2 x_{2}}, y_{1}=\frac{E_{12}}{E_{13}}, y_{2}=\frac{E_{3}}{E_{13}}$.

We apply expanded ensemble (EE) MC [5] to calculate $x, y, x_{1}, y_{1}, x_{2}, y_{2}$ for systems with $N=2,3$ noninteracting fermions in a harmonic field and compare our results with the exact data, figure 2 . It is seen that x_{1} and x_{2} follow the exact curves very accurately. Data for $f_{3}, f_{3}^{E}, s p=\frac{1}{2}$ are also consistent up to $\beta=9$. Data for $s p=0$ (not shown) already strongly deviate from theory at $\beta>3$.

3. Applying classical density functional theory developed for polymers to quantum statistical expressions in path integral form

The density functional approach implies obtaining in some way the particle density $\rho(\mathbf{r})$, which is used for the calculation of PF, $Z=\int \rho(\mathbf{r}) \mathrm{d} \mathbf{r}$, and related averages. Consider a quantum particle in an external field $\phi(\mathbf{r})$ at inverse temperature β presented by a closed trajectory of n beads $\mathbf{R}=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right)$. This trajectory can be treated as a phantom polymer ring chain of n monomers with springs dependent on temperature. $\rho(\mathbf{r})$ can be expressed as

$$
\rho(\mathbf{r})=\int \sum_{i=1}^{n} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) \exp \left(-\beta V_{b}(\mathbf{R})\right) \exp \left(-\beta \Phi_{\text {ext }}(\mathbf{R})\right) \mathrm{d} \mathbf{R}
$$

with $V_{b}(\mathbf{R})=K_{f} \sum_{i=1}^{n}\left(\mathbf{r}_{i+1}-\mathbf{r}_{i}\right)^{2} ; \Phi_{\text {ext }}(\mathbf{R})=\frac{1}{n} \sum_{i=1}^{n} \phi\left(\mathbf{r}_{i}\right) ; K_{f}=\pi n / \beta \lambda^{2} ; \lambda^{2}=\frac{2 \pi \hbar^{2} \beta}{m}$; $\mathbf{r}_{n+1}=\mathbf{r}_{1}$.

Table 2. ORA-results for ground states of hydrogen, helium and lithium compared to exact values in eV: $E_{g}(\mathrm{H})=-13.606, E_{g}\left(\mathrm{He}^{+}\right)=-54.4, E_{g}(\mathrm{He})=-79.1, E_{g}\left(\mathrm{Li}^{2+}\right)=-121.8, E_{g}^{\mathrm{ex}}\left(\mathrm{Li}^{+}\right)=$ -197.4.

	$T(\mathrm{~K})$	n	$U^{\text {tot }}(\mathrm{eV})$	$R_{s}(\AA)$	$R_{\text {cut }}(\AA)$	$N_{\text {grid }}$	$t_{\mathrm{CPU}}(\mathrm{FFT})(\mathrm{m})$
H	4000	96000	-13.607	0.001	10.24	4096	30.0
He^{+}	8000	16384	-54.608	0.001	15.36	4096	5.0
He	8000	16384	-78.150	0.001	15.36	4096	32.0
Li^{2+}	16000	24000	-122.725	0.001	15.36	4096	7.5
Li^{+}	16000	24000	-197.342	0.001	15.36	4096	45.0

3.1. Exact solution for a ring

For a ring $\rho(\mathbf{r})$ can be calculated exactly in the following way: $\rho_{\text {ring }}^{(\text {exact })}(\mathbf{r})=\exp (-\beta \phi(\mathbf{r})) \times$ $\int \exp \left(-\beta \phi\left(\mathbf{r}^{\prime}\right)\right)\left[g_{n / 2}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)\right]^{2} \mathrm{~d} \mathbf{r}^{\prime}$, where $g_{n / 2}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ is the $n / 2$ th order correlation function obtained from a p-stage procedure: $g_{1}^{(0)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\exp \left(-\beta K_{f}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)^{2}\right) ; g_{2}^{(1)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=$ $\int \exp \left(-\beta \phi\left(\mathbf{r}^{\prime \prime}\right)\right) g_{1}^{(0)}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right) g_{1}^{(0)}\left(\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}\right) \mathrm{d} \mathbf{r}^{\prime \prime} ; \ldots ; g_{n / 2}^{(p)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\int \exp \left(-\beta \phi\left(\mathbf{r}^{\prime \prime}\right)\right) g_{n / 4}^{(p-1)}\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right)$ $g_{n / 4}^{(p-1)}\left(\mathbf{r}^{\prime}, \mathbf{r}^{\prime \prime}\right) \mathrm{d} \mathbf{r}^{\prime \prime}$. The integral of $\rho_{\text {ring }}^{(\text {exact })}(\mathbf{r})$ yields the PF. The problem reduces to evaluation of integrals over $r^{\prime \prime}$ for each pair $\left(r, r^{\prime}\right)$. Results for a quantum 1D oscillator and comparison with the analytic data (table 1) shows the striking accuracy of the numerical method in a wide range of T together with the great number of beads involved and extremely short computer times (compared with typical MC parameters).

3.2. Exact expression for an open chain and related approximation for a ring

For an open chain $\rho(\mathbf{r})$ is $\rho_{\text {open }}^{(\text {exact })}(\mathbf{r}) \sim \sum_{i=1}^{n} \exp \left(-\frac{\beta}{n} \phi(\mathbf{r})\right) G^{(i)}(\mathbf{r}) G^{(n-i)}(\mathbf{r})$, where functions $G^{(i)}(\mathbf{r})$ are obtained from the following iteration procedure: $G^{(0)}(\mathbf{r})=1 ; G^{(i)}(\mathbf{r})=$ $\int G^{(i-1)}\left(\mathbf{r}^{\prime}\right) \exp \left(-\frac{\beta}{n} \phi\left(\mathbf{r}^{\prime}\right)\right) \exp \left(-\beta K_{f}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)^{2}\right) \ldots$.

This equation is exact for open chains and can yield an open ring approximation (ORA) $\rho_{\text {ring }}^{(\text {approx })}(\mathbf{r}) \sim n \exp \left(-\frac{\beta}{n} \phi(\mathbf{r})\right)\left[G^{(n / 2)}(\mathbf{r})\right]^{2}$. That becomes more and more accurate with increasing n. ORA was used for a quantum particle in a 3D harmonic field, an electron in the H -atom and $\mathrm{He}^{+}, \mathrm{Li}^{2+}$ ions. In all the 3D cases the fast Fourier transform was used (table 2).

3.3. Interacting particles in a Coulomb field, no exchange

Particles are inserted into the external field one after another. The first one is treated within the ORA procedure while a self-consistent iteration for each newly added chain-particle interacting with a temporarily fixed distribution of all the rest is organized. This is done on the mean-field level by calculating the 'correlation integral' for an arbitrary pair of interacting beads: $\tilde{I}_{\text {corr }}\left(\mathbf{r}^{\prime}\right)=\int \frac{\rho_{N}\left(\mathbf{r}^{\prime \prime}\right)}{N} \exp \left[-\beta_{n} V_{\text {int }}\left(\left|\mathbf{r}^{\prime}-\mathbf{r}^{\prime \prime}\right|\right)\right] \mathrm{d} \mathbf{r}^{\prime \prime}$, which is incorporated into iteration ORA procedure: $\tilde{G}_{N}^{(i)}(\mathbf{r})=\int \tilde{G}_{N}^{(i-1)}\left(\mathbf{r}^{\prime}\right) \tilde{I}_{\text {corr }}^{N-1}\left(\mathbf{r}^{\prime}\right) \exp \left(-\beta_{n} \phi\left(\mathbf{r}^{\prime}\right)\right) \exp \left(-\beta_{n} K_{f}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)^{2}\right) \mathrm{d} \mathbf{r}^{\prime}$.

The overall distribution of N distinguishable quantum particles is then obtained as: $\tilde{\rho}_{N}(\mathbf{r}) \sim N n \exp \left(-\beta_{n} \phi(\mathbf{r})\right)\left[\tilde{G}_{N}^{(n / 2)}(\mathbf{r})\right]^{2}$ (iteration is initialized with $\rho_{N}(\mathbf{r})=\rho_{N-1}(\mathbf{r}) N /(N-$ 1), $N>1$). The updated distribution is mixed with the previous one: $\tilde{\tilde{\rho}}_{N}(\mathbf{r})=\left(4 \tilde{\rho}_{N}(\mathbf{r})+\right.$ $\left.\rho_{N}(\mathbf{r})\right) / 5$, so that a few (<10) iterations per added particle are needed.

The energy of a particle in the external field is calculated as $U_{1}^{\text {pot }}(\beta)=\int \phi(\mathbf{r}) \rho\left(\mathbf{r}: \beta_{n}\right) \mathrm{dr}$; the inter-particle interaction $U_{N}^{\text {int }}(\beta)=\frac{N(N-1)}{2} \int \frac{\rho_{N}\left(\mathbf{r} ; \beta_{n}\right)}{N} \mathrm{~d} \mathbf{r} \int \frac{\rho_{N}\left(\mathbf{r}^{\prime} ; \beta_{n}\right)}{N} \exp \left(-\beta_{n} V_{\text {int }}(\mid \mathbf{r}-\right.$
$\left.\left.\mathbf{r}^{\prime} \mid\right)\right) V_{\mathrm{int}}\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right) \mathrm{d} \mathbf{r}^{\prime}$. Virial theorem gives for Coulomb interaction $U_{N}^{\text {kin }}=-\frac{1}{2}\left(U_{N}^{\text {pot }}+U_{N}^{\text {int }}\right) ;$ so for total energy $U_{N}^{\mathrm{tot}}=U_{N}^{\mathrm{pot}}+U_{N}^{\mathrm{int}}+U_{N}^{\mathrm{kin}}=\frac{1}{2}\left(U_{N}^{\mathrm{pot}}+U_{N}^{\mathrm{int}}\right)$.

Calculations were made for two electrons in the He atom and in the Li^{+}ion (table 2).

4. Conclusion

We presented three different approaches to the treatment of quantum statistical problems. The entropic sampling and expanded ensemble Monte Carlo methods of sections 1 and 2 can readily be applied to more complicated systems than those considered above; though this would require much greater computer efforts. The density functional approach of section 3 appears to be much faster, though so far it has been restricted to low-dimensional cases or cases with spherical symmetry.

References

[1] Wang F and Landau D P 2001 Phys. Rev. Lett. 862050
[2] Vorontsov-Velyaminov P N and Lyubartsev A P 2003 J. Phys. A: Math. Gen. 36685
[3] Feynman R P 1972 Statistical Mechanics (New York: Benjamin)
[4] Lyubartsev A P and Vorontsov-Velyaminov P N 1993 Phys. Rev. A 484075
[5] Lyubartsev A P, Martsinovsky A A, Shevkunov S V and Vorontsov-Velyaminov P N 1992 J. Chem. Phys. 961776

